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Analysis of thermal fatigue behaviour of 
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The effect of the level of maximum temperature (Tma x ), the temperature range (AT) and 
the mode of convective heat transfer on the thermal fatigue resistance of brittle structural 
materials is analysed. Expressions are derived for the number of thermal cycles to failure 
in terms of the appropriate mechanical and thermal properties, crack growth parameter, 
AT and Tmax. For simultaneous changes in Tmax and AT commonly used in practice, the 
change in thermal fatigue life is governed by both the thermal stress intensity exponent 
(n) and the activation energy (Q) for subcritical crack growth, in contrast to the results of 
other studies. For constant Tmax but variable AT, thermal fatigue life is affected by n 
only, whereas, for constant AT but variable Tmax, the value of Q alone governs changes in 
fatigue-life. Heat transfer by natural or forced convection will result in differences in 
thermal fatigue resistance. Recommendations are made for the design and analysis of 
thermal fatigue experiments. Figures-of-merit for the selection of materials with high 
thermal fatigue resistance are presented. 

1. Introduction 
Brittle structural materials can exhibit static 
[1, 2], dynamic [3, 4] and cyclic [5, 6], as well as 
thermal [7, 8], fatigue. These mechanisms of 
fatigue result from sub-critical crack growth due to 
stress-corrosion at low temperatures or diffusional 
mechanisms at high temperatures. For the purpose 
of reliable design of structures or components 
made of brittle materials, it is imperative that the 
mechanisms responsible for fatigue are quali- 
tatively, as well as quantitatively, well understood. 
An extensive literature indicates that the "failure- 
prediction" of brittle materials subjected to static 
[9, 10], dynamic or cyclic fatigue [11] under 
isothermal conditions appears well-understood. 
The statistical nature of brittle fracture can also be 
incorporated into predictions of fatigue-behaviour. 

The thermal fatigue behaviour of brittle 
materials is more complex for the principal reasons 
that both the stresses and temperatures change 
simultaneously, requiring numerical techniques for 
the calculations of thermal fatigue behaviour. In a 
number of such studies [12-14] ,  reasonable to 
excellent agreement was found between laboratory 

data and the predicted number of thermal cycles- 
to-failure. More recently, by analysing experi- 
mental data for thermal fatigue behaviour of a 
number of brittle structural materials, Kamiya and 
Kamigaito [15] obtained quantitative information 
on the behaviour of sub-critical crack growth 
during thermal fatigue. 

In order to provide a basis for the objectives 
of the present study, it should be noted that for 
convective heat transfer used in most thermal 
fatigue studies the magnitude of the transient 
thermal stresses is a function of the temperature 
differences encountered. The rate of sub-critical 
crack growth, however, is a function of the 
thermal stresses as well as the absolute tempera- 
tures involved. These two separate effects are 
critical to the design of a thermal fatigue experi- 
ment as well as to the analysis of the data obtained. 

In general, the thermal fatigue behaviour of a 
material is established by measuring the number of 
thermal cycles (N) required to cause failure of 
appropriate specimens cycled over a temperature 
range, AT, between an upper temperature, Tma,,, 
and a lower temperature, Train. Fig. 1 schematically 
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Figure 1 Schematic representation of 
the time-dependence of the temperatuxe 
and stress in the surface of a thermal 
fatigue specimen. 

shows the time-dependence of the temperatures 
and stresses in the surface of a thermal fatigue 
specimen. 

A complete thermal fatigue curve is established 
by determining the number of thermal cycles N 
for a range of values of AT. However, critical to 
the results obtained is the specific way in which 
s is varied. Commonly, AT is varied by lowering 
the upper temperature, Tmax, while the lower 
temperature, Zmin, is kept constant. In this case 
the magnitude of the stresses as well as the 
absolute values of temperature are varied. If AT 
were changed by raising (or lowering) Train, the 
stresses are varied, but the absolute temperatures 
at which most of the crack growth takes place are 
kept constant. Similarly, AT can be kept constant, 
by changing Zma x and Tmin by an equal amount. 
Depending on the kinetics of crack growth, these 
three different conditions are expected to lead to 
differences in thermal fatigue behaviour as 
measured by the number of cycles-to-failure. A 
further complexity is introduced by noting that 
heat transfer can occur in a forced or natural con- 
vective mode. In forced convection, heat transfer 
is Newtonian, i.e. the heat transfer coefficient is 
independent of the difference in instantaneous 
temperature of the surface of the specimen and 
the temperature of the fluid medium used for 
heating or cooling the specimen. In contrast, for 
natural convection, the heat transfer coefficient is 
a non-linear function of the difference in instan- 
taneous surface temperature and the temperature 
of the fluid medium [ 16]. Under these conditions 
the heat transfer coefficient changes as the speci- 
men changes in temperature (see Fig. 1) towards 
thermal equilibrium. Detailed calculation of this 
effect by the finite element method, to be 

reported elsewhere [17], showed that for a given 
material and specimen size and identical values of 
the heat transfer coefficient at the beginning of 
the thermal cycle, the magnitude of the maximum 
thermal stress under conditions of natural con- 
vection, are significantly less than the corre- 
sponding values for forced convection. 

It is the purpose of this study to present an 
analytical treatment of the temperature and heat 
transfer variables in the thermal fatigue resistance 
of brittle materials, in order to establish guidelines 
for the design of thermal fatigue experiments and 
analysis of the data in terms of crack-growth be- 
haviour. 

2. Analysis 
2.1. General  
The analysis will concentrate on thermal fatigue 
specimens in the shape of long cylinders with 
circular cross-section. For this geometry, solutions 
for the thermal stresses are available [17, 18]. The 
ends of the specimens are assumed to be thermally 
insulated so that fracture at the ends is avoided. 
This assumption will permit the use of the thermal 
stresses calculated for circular cylinders of infinite 
length. It is further assumed that the thermal 
fatigue mechanism operates only during the 
cooling part of the cycle. This latter assumption is 
reasonable since under those conditions the 
stresses exceed those during heating and are a 
maximum in the specimen surface most sus- 
ceptible to stress-corrosion and the introduction of 
flaws during specimen preparation and handling. 
The results of the analysis can be easily extended 
to other specimen geometries or thermal fatigue 
during heating or combinations of heating and 
cooling. Finally it is assumed that between thermal 
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cycles the specimen comes to thermal equilibrium 
so that overlapping of the transient thermal 
stresses of successive thermal cycles need not be 
considered. 

2.2. T h e o r y  
The rate of sub-critical crack growth (d) under 
conditions of thermal fatigue will be assumed to 
be identical to the expression for isothermal con- 
ditions given by 

5 = A K ~  exp ( - -Q/RT) ,  (1) 

where A is a constant, n is the stress intensity 
exponent, K I is the Mode I stress-intensity factor, 
Q is the activation energy, R is the gas constant 
and T is the absolute temperature. 

In terms of the thermal stress (o) and crack size 
(a), K I is defined by 

K I = Yoa t/2, (2) 

where Y is a constant related to the stress distri- 
bution and the geometry of the crack. Implicit in 
the use of Equation 2, is the assumption that,  over 
the total range of crack growth, the crack size 
remains sufficiently small, compared to the size of 
the specimen, that the compliance of the speci- 
mens remains unaffected. This will permit calcul- 
ation based on thermo-elastic theory. In this 
manner, the complexity of the effect of the 
presence of the crack on the thermal stress field 
and thermal stress intensity factor, which would 
require numerical methods, is avoided. 

For a given value of thermal stress, failure will 
occur at a critical crack size, ar such that K I = Kic , 
the critical stress intensity factor. The thermal 
fatigue life is defined by the number of thermal 
cycles required to propagate the crack from an 
initial crack size, ao to the critical crack size, ac. 

In direct analogy to the time-to-failure under 
isothermal conditions, the number of cycles-to- 
failure (N) in thermal fatigue can be expressed 

N = B f KIe KIdK I 
o 502(t) YZ , (3) 

where B is a constant and or(t) is the transient 
thermal stress. Because of the relative complexity 
of the analytical expressions for the transient tem- 
peratures and stresses even for the simple geometry 
such as a solid circular cylinder, the integration of 
Equation 3 is most conveniently carried out by 
numerical methods, such as those employed in a 
number of previous investigations [ 12, 19, 20]. 

However, in order to obtain a convenient 
analytical expression for the number of cycles-to- 
failure, a number of simplifying, but entirely 
reasonable assumptions are made. Firstly, as indi- 
cated by Fig. 1, any temperature during the 
thermal cycle can be expressed as a fractional 
value of the maximum temperature, Tmax, at the 
beginning of the thermal cycle. For this reason, the 
effect of the thermally activated nature of the crack 
growth on thermal fatigue life can be expressed 
uniquely in terms of a factor exp (Q/RTmax).  
Secondly and similarly, any value of the transient 
thermal stress during the thermal cycle can be 
expressed as a function of the maximum value of 
thermal stress, Oma x encountered during the 
thermal cycle. Furthermore, the analytical results 
for the time-to-failure [10] under isothermal, 
constant stress conditions, indicate that unless the 
total extent of crack growth is small, the time-to- 
failure is an inverse function of the value of the 
stress intensity factor at the time (t = 0) of the 
application of the load. For these latter two 
reasons, it will be assumed that the number of 
cycles-to-failure, as affected by the stressqntensity 
factor, can be uniquely defined in terms of an 
inverse function of the maximum value of the 
thermal stress intensity factor (Kn) encountered 
during the first thermal cycle. In effect this changes 
the lower limit of the integral of Equation 3 from 
zero to Kii. Furthermore, it will be assumed that 
the number of thermal cycles-to-failure is an 
inverse function of the time-duration over which 
the transient thermal stress acts for each cycle. 
Analytical results [18] for the thermal stresses 
indicate that the magnitude of stress as a function 
of time can be expressed in terms of a non- 
dimensional time, r = K t / R  2, where K is the 
thermal diffusivity, t is the real time and R is the 
radius of the cylinder. For any material and speci- 
men size, the time period of each thermal stress 
pulse is proportional to R 2/K making the number 
of cycles-to-failure proportional to K/R 2 . 

Substitution of Equation 1 into Equation 3 
and incorporation of the above conclusions, the 
number of thermal cycles-to-failure, in analogy to 
the time-to-failure under isostress and isothermal 
conditions, can be written in the general form 

CK exp (Q/RTmax) 
N = A a 2 a x R 2 r 2 (  n _ 2)K(n_2) , (4) 

where C is a constant which, in principle, can be 
obtained by numerical integration of Equation 3 
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and Kii is defined by 

K i i  = Y(rraax al/2. ( 5 )  

Substitution of Equation 5 into Equation 4, 
results in the value of N expressed directly in 
terms of the maximum value of the thermal stress 

CK exp (a/RTraa~) 
N = R2anaxA( n _ 2)yna!n_:)/2 �9 (6) 

2.3. Derivation of thermal fatigue-life 
2.3.1. Forced convection 
Under forced convection, the heat transfer co- 
efficient is independent of the range of tempera- 
ture difference over which the specimen is being 
cycled. Over the range of the Biot number, 
1 < 13 < 20, the maximum value of tensile thermal 
stress in the surface of a circular rod can be ex- 
pressed to a very good approximation by [18, 21] 

(1  - ~) 
~ - a E A ~  (1.45 + 4.95/3), (7) 

where a is the coefficient of thermal expansion, E 
is Young's modulus of elasticity, v is Poisson's 
ratio, AT is the temperature range over which the 
specimen is being cycled (AT = T m a  x - -  Train, see 
Fig. 1) and 3 = R h / k  where R is the cylinder 
radius, h is the heat transfer coefficient and k is 
the thermal conductivity. 

Substitution of Equation 7 into Equation 6 
yields 

CK 
N = y n ( n _  2)AR2a!n_2)/2 x 

~ 

aEAT] (1.45 + 4.95/3) n exp (Q/RTmax). 

( 8 )  

In order to establish the nature (slope, etc) of a 
thermal fatigue curve for a given material it is most 
convenient to derive expressions for the ratio of 
the values of N for two conditions of thermal 
fatigue. As discussed earlier, there are three basic 
ways in which a thermal fatigue experiment can be 
carried out: (1) AT can be varied by raising or 
lowering Tmax, keeping Train constant; (2) AT can 
be varied by keeping Tmax constant and raising or 
lowering Train and (3) AT can be kept constant by 
raising or lowering Traax and Train by equal 
amounts. 

The effect of these three changes in tempera- 
ture on thermal fatigue4ife will be different. 

For analytical proposes, it is most convenient 
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to examine these quantitatively by deriving ex- 
pressions for the ratio of the nmnber of cycles-to- 
failure for small differences in Tmax, Train or AT, 
which yield the following results. 

2.3.1.1. AT varied; Tmax constant. For this con- 
dition, the ratio of the number of cycles-to-failure 
Nl and N2 for values of AT1 and AT2, respectively, 
is 

NIlN2 = (ATllAT2) -n. (9) 

2.3.1.2. AT constant; Tma• varied. For two values 
of Tl,max and T2,m~,, the ratio of the number of 
cycles-to-failure N1 and N2, respectively, is 

N1/N2 = exp Tl,-ma x 

2.3.1.3. AT varied; Trnin constant. For this con- 
dition the ratio of the number of cycles-to-failure 
N1 and N2 for values of AT~ and ATe, respectively, 
becomes 

- =  r , , ; . ax  r ,m x N2 \AT2] exp ~ 
(11) 

2.3.2. Natural convection 
Under conditions of natural convection the heat 
transfer coefficient is a function of the instan- 
taneous temperature difference (ATi) between 
the specimen surface and the fluid medium. For 
values of the Grasshof, Prandtl and Nusselt 
numbers appropriate for laboratory studies of 
thermal fatigue behaviour, the heat transfer co- 
efficient, h, can be expressed [16] as 

h = C'(ATi) u4, (12) 

where C' is a constant which depends on the 
properties of the fluid medium such as the 
vicsocity, density, thermal expansion, specific heat 
and thermal conductivity as well as on the size of 
the structure being heated or cooled. Equation 12 
indicates that the heat transfer coefficient de- 
creases as the difference in temperature between 
the specimen surface and medium (ATi)decreases 
during the transient heat transfer. In accepting the 
validity of Equation 12, it is implicitly assumed 
that during the transient heat trasnfer, conditions 
for natural free convection pertain, which essen- 
tially is a steady-state phenomenon. 

The transient thermal stresses in a solid cylinder 



under natural heat transfer conditions described by 
Equation 12 were calculated by finite element 
methods to be reported in detail elsewhere. It was 
found that the maximum value of the tensile 
thermal stresses in the surface of the cylinder over 
the range 0.5 </3 < 20, to an excellent approxi- 
mation, can be written [ 17]. 

1--p 
O ' m l a x  - -  - -  (1.90 + 6.0//3), (13) 

grog:AT 

where the Blot number,/3, is now defined in terms 
of the maximum value of the heat transfer co- 
efficient encountered, i.e. at the value of ATi in 
Equation 12 equal to AT of the thermal fatigue 
environment, such that 

/3 = RC'(AT)I/4/k. (14) 

With /3 defined in this manner, a direct com- 
parison of Equations 7 and 13 shows that for the 
same Biot number the magnitude of maximum 
thermal stress in natural convection is considerably 
less than the corresponding value for forced con- 
vection. 

Substitution of Equation 13 into Equation 6 
results in the number of thermal cycles-to-failure 
under conditions of natural convection 

C~ 
N = y2(n_2)AR2a~n_2) n x 

(1 r[19 
aEAT] + RC,(AT)V 4 exp (Q/RTmax). 

(is) 
In direct analogy to the expressions derived 

earlier in case of forced convection for the ratio of 
the thermal cycles to failure, corresponding 
equations for condition of natural convection can 
also be derived as follows: 

2.3.2.1. AT varied; T m a  x constant. From Equation 
15, the ratio of the thermal cycles-to-failure N1 
and N2, corresponding to values of AT1 and AT2 
becomes: 

- ~  

- -  ~ X 
N2 \AT2] 

- I -  RC,(AT2)I/4[ . 

(16) 

Equation 16 can be presented in smlptified 

form for the two limiting values of the Biot 
number 

N1 (ATlt-n 
=\-s /3 >> 1 (lya) 

and 

N1 (AT~) -sn/4 
N--z = \ ~ - 2 ]  /3 < 1 (17b) 

2.3.2.2. AT constant; Tmax varied. For two values 
of T1, max and T2, max the ratio of the thermal 
cycles-to-failure, N 1 and N2, respectively, with the 
aid of Equation 15 can be derived to be 

N2 l, max T2,max . (18) 

2.3.2.3. AT varied, Train constant. For con- 
venience, the ratio of the thermal cycles-to-failure 
N1 and N2 corresponding to values of AT1 and 
AT2 and values of Ta, max and 7"2, max will be 
written directly for the high (/3 >~ 1) and low (13 ~ 1) 
Biot number approximations 

N1 (ATl t - "  exp [RQ_( 1 1 )] 
N2 - \AT2] T l ,  m a x  T 2 , ~ l a X  

/3 > 1 (19a) 
and 

-~2N1 = (ATIy  T M  exp [RQ-( lm 1 )] 
r, ,  ax r , ax 

/3 < 1. (19b) 

3. Discussion 
The analytical results indicate that the role of the 
individual parameters specifically n and Q, which 
affect the kinetics of thermal fatigue crack growth, 
depends on the method by which a thermal fatigue 
curve is established. For simplicity, relative 
thermal fatigue-life will be considered only, such 
that the discussion can focus in detail on the crack 
growth variables which affect the ratios of cycles- 
to-failure for a given thermat environment, 
material, specimen and crack geometry. 

As indicated by Equations 9 and 17, if thermal 
fatigue life is established by keeping Tmax 
constant and varying AT by varying Train, relative 
changes in thermal fatigue life are governed only 
by the stress intensity factor exponent, n. In con- 
trast, as indicated by Equations 10 and 18, if a 
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thermal fatigue curve is established by keeping AT 
constant and varying Tma x and Tmin by equal 
amounts, changes in thermal fatigue life are influ- 
enced only by the activation energy for sub-critical 
crack growth. 

If, however, as is common in practice, thermal 
fatigue behaviour is measured by keeping Train 
constant and varying Tm~x and AT by the same 
amount, changes in thermal fatigue life as indi- 
cated by Equations 11 and 19, are affected by 
both the stress intensity exponent as well as the 
activation energy for crack growth. Comparing the 
analytical results for forced and natural convection 
shows that for the latter (with/3 ~ 1) the role of 
the stress intensity factor exponent (n) is greater 
than in the former. In the high Blot number 
approximation, the role of n is identical for both 
forced and natural convection. 

The above conclusions are critical to the design 
of thermal fatigue experiments and the analysis of 
experimental data obtained. One significant con- 
clusion is that thermal fatigue data obtained by 
varying AT and Tma x simultaneously (which is the 
usual case) cannot be used to obtain a quantitative 
value for the stress intensity exponent, by ob- 
taining the value of the slope of log N against 
log AT. This latter conclusion is at variance with 
the recent results of Kamiya and Kamigaito [15], 
which could lead to misleading results unless due 
care is exercised. 

For the purposes of illustration, a numerical 
example will be considered on thermal fatigue for 
hot-pressed polycrystalline silicon nitride sub- 
jected to forced convection heat transfer by 
Ammann e t  al. [13] by cycling appropriate speci- 
mens at an initial temperature of near 1600 K into 
a fhiidized bed at approximately 313K. Appro- 
priate values for the stress intensity exponent and 
activation energy for sub-critical crack growth are 
n ~--6 and Q-~ 170kcalmo1-1, respectively. The 
change in thermal fatigue life caused by a simul- 
taneous decrease in Tmax and AT of 20 ~ C will be 
considered. Substitution of the above values of n 
and Q into Equation 11 yields the result that due 
to the decrease in magnitude of thermal stress (i.e. 
AT) thermal fatigue life is increased by 15% (i.e. 
by a factor of 1.15). In contrast, the decrease in 
the value of Tma x increases thermal fatigue life by 
a factor equal to 1.97, for .a  total increase in 
fatigue life due to both effects equal to 2.26. 
These numerical results indicate that in silicon 
nitride the activation energy for slow crack growth 
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plays a far more important role in establishing 
thermal fatigue behaviour than the stress intensity 
exponent. For this reason, a plot of log N against 
log AT of the data of Ammann et  al. [13] cannot 
yield a reliable value of n in contrast with the 
findings of Kamiya and Kamigaito [15]. Because 
of the relatively small effect of the value of n on 
thermal fatigue life, it is more appropriate to plot 
log N against 1/Tmax to yield a value of Q. Doing 
this with the data of Ammann e t  al. [13] results 
in a value of Q~-130kcalmole -1 which is less 
than the value found by experiment. In fact, 
because the role of n is ignored in this approach, 
the activation energy determined from the slope of 
the log N against 1/Tma~ plot should be higher than 
the value of Q determined by actual measurement. 
It is the view of these writers that the total 
number (seven) of data points in the set of data of 
Ammann et  al. [13] is too small to reliably estab- 
lish the thermal fatigue behaviour of silicon 
nitride. Of the seven, four show significant data 
scatter for nearly identical values of Tmax, leaving 
only three data points to establish the effect of AT 
or Tmax on fatigue life. Three data points are not 
considered adequate in view of the statistical 
nature of brittle fracture of such materials as 
silicon nitride resulting from variations in crack 
size, geometry, orientation and other variables. 

Such statistical effects were largely eliminated 
in the study of Hasselman et  al. [20] on the 
thermal fatigue behaviour of circular rods of soda- 
lime-silica glass, thermally cycled from higher tem- 
perature into a water bath at a constant lower 
temperature. The excessive scatter in thermal 
fatigue data was reduced by promoting failure at 
artificial surface flaws introduced by diamond 
indentation. The data obtained and the property 
value for the glass can be used to numerically 
illustrate the relative influence of n and Q on 
thermal fatigue life. 

For the soda4ime-silica glass rods investigated, 
n ~ 1 6  and Q ~ 2 5  kcalmole -1. In the fatigue 
experiments Tmax ~ 433 K and AT ~ 130 ~ C. The 
relative change in thermal fatigue life which results 
from a decrease in Tmax and AT of 10 ~ C will be 
calculated. Assuming that heat transfer occurred 
by forced convection as the result of the motion 
of the specimen through the water, substitution of 
the above values of n and Q in Equation 11 yields 
an increase in thermal fatigue life due to the de- 
crease in AT by a factor of 3.6 whereas the de- 
crease in Tmax increases thermal fatigue life by a 
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Figure 2 Thermal fatigue life of soda-lime-silica glass specimen subjected to repeated water quench (after [20]): (a) as a 
function of the initial temperature difference, (b) as a function of the maximum temperature. 

factor approximately equal to 1.92. In the case of 
soda-lime-silica glass, then, the stress intensity 
exponent plays a more important role in estab- 
lishing fatigue life than the activation energy. This 
contrasts with the previous findings for silicon 
nitride. Of course, such an effect is expected since 
for the silicon nitride the values of n and Q are 
lower and higher, respectively, than the corre- 
sponding values for the soda-lime-silica glass. 

The data for the soda-lime-silica glass rods of 
Hasselman et al. [20] can be used to illustrate the 
erroneous values of n and Q, which can be ob- 
tained unless care is taken. Fig. 2a and b show the 
experimental data for the number-of-cycles to 
failure for the fifth specimen out of a total set of 
nine. Fig. 2a shows in N plotted as a function of 
In AT, whereas Fig. 2b shows the identical data 
plotted as a function of 1/Tmax. Except for the 
data for 1 cycle-to-failure (log N = 0), which may 
be governed by failure well before the end of the 
first cycle, both sets of data show reasonably 
linear behaviour. The slope of the data in Fig. 2a 
yields an apparent value for the stress intensity 
exponent of  22.7. This is significantly higher than 
the literature value [10] of n for this material, as 
expected since a plot of In N against in AT does 
not reflect changes in the value of Tmax. Fig. 2b 

results in an apparent value of Q ~- 69 kcal tool -]. 
This is far in excess of the experimental value, be- 
cause a plot of l n N  against 1/Tmax does not 
reflect the role of the stress intensity exponent in 
thermal fatigue life. Assuming the existence of 
natural convection during the thermal quench of  
the soda-lime-silica glass rods results in an only 
slightly lower value of n, because the value of the 
Biot number due to the thermal conductivity has a 
value near to 5 to 10. 

Since the above numerical examples indicate 
that care needs to be exercised in the analysis of 
thermal fatigue data, the following recommen- 
dations are made: Values of thermal fatigue life 
should be established for two basic conditions; 
(1) Tmax should be kept constant with AT being 
varied by changing Train ; (2) AT should be kept 
constant by varying Tmax and Tmin by an equal 
amount. The data obtained for the first condition 
should result in an unambiguous value of n 
whereas the results for the second condition 
should give an unbiased value for Q. The data 
obtained in this manner should be sufficient to 
make predictions of thermal fatigue life for any 
combination of Tmax, Tmin and AT. If  desired, 
additional experimental data can be obtained for 
verification of such predictions. 
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Equations 8 and 15 indicate that, even for 
identical specimen temperatures, the thermal 
fatigue life for natural and forced convention 
modes of heat transfer will be different. There- 
fore, for quantitative evaluation of thermal 
fatigue life, the mode of heat transfer must be 
established. Typically, in a thermal fatigue experi- 
ment, the hot specimen is inserted into a 
quenching bath at a lower temperature and held 
there for a specified period of time. Then, for a 
small specimen in a quenching medium (such as 
water) with a high heat transfer coefficient where 
the maximum stress could develop during the time 
period when the specimen is moving through the 
medium, the thermal fatigue life will be controlled 
by the forced convection mode of heat transfer. 
On the other hand, for a large specimen in a 
quenching medium (such as oil) with a low heat 
transfer coefficient where the maximum stress 
will develop during the hold period after insertion 
into the fluid, the fatigue life will be controlled by 
the natural convection. This suggests the need for 
a priori rough estimation of the mode of heat 
transfer before the quantitative data analysis can 
be made. 

Some materials may show the existence of a 
pronounced fatigue limit, i.e. a value of stress 
intensity factor below which no slow crack growth 
occurs. This appears to be the case for polycrystal- 
line mullite investigated by Kamiya and Kamigaito 
[15]. In case of such a pronounced fatigue limit, 
the expressions presented earlier will need to be 
modified. A further complexity in data analysis 
arises for heat transfer coefficients which may 
indicate a strong temperature dependence. For 
many fluid media, this can result from the effects 
of  nucleate boiling and film formation. The corre- 
sponding changes in h with changes in Tmax, Train 
and AT could well play a major role in governing 
fatigue life. In particular, this could be the case 
with water, commonly used as a quenching 
medium. Extra caution is recommended in 
analysing data of thermal fatigue experiments ob- 
tained with water baths. For this reason, fluidized 
beds may be preferred over a water bath. How- 
ever, in the use of a fluidized bed, caution must be 
exercised with specimens such as glass whose 
thermal fatigue life may be greatly influenced by 
surface conditions. The surface of a glass specimen 
may be damaged during its motion through the 
fluidized bed due to particte impact and the 
fatigue life may be greatly reduced. Therefore, the 
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effect of surface damage due to particle contact in 
the fluidized bed must be independently evaluated 
and incorporated in the quantitative evaluation 
and interpretation of the experimental data. 

The above analyses also shed light on the effect 
of specimen size and material properties on 
thermal fatigue life. For high values of Blot 
number, Equations 8 and 15 indicate that thermal 
fatigue life is inversely proportional to the square 
of the dimensions of the specimen. On dimensional 
grounds, this conclusion should be generally valid 
regardless of geometry. For low values of Blot 
number, frequently encountered in laboratory 
studies and such components as silicon nitride and 
silicon carbide turbine blades and valves, a very 
pronounced size effect exists. For both forced and 
natural convection, Equations 8 and 15 suggest 
that 

N ~ 1/R n+2 /3 ~ 1. (20) 

This result indicates that major improvements 
in thermal fatigue life can be achieved by minor 
design changes in the form of even a slight 
reduction in component size. 

In practice, the materials technologist may wish 
to select the material with highest thermal fatigue 
resistance. For a specimen of given size and 
geometry with a given crack size and configuration 
and given heat transfer environment, highest 
thermal fatigue resistance can be obtained by 
optimizing the relevant material properties which 
govern thermal fatigue failure. Materials with 
optimum thermal stress resistance can be selected 
on the basis of thermal stress resistance parameters 
or figures-of-merit which are available for a wide 
variety of heat transfer conditions and modes of 
thermal stress failure. Similar figures-of-merit can 
be defined for optimizing thermal fatigue resis- 
tance. For both forced and natural convection 
these can be obtained from Equations 8 and 15. 

K [(1 - v)~l" A(n-2)[~l exp (Q/RTmax) 

and 

A(n -- 2) exp (Q/RTmax) 

/ 3 ~ 1  

(21a) 

/3>>1. 
(21b) 

These figures-of-merit indicate that thermal 
fatigue life is governed by as many as seven 
material properties. Without quantitative infor- 



m a r i o n  o n  these  p roper t i e s ,  e s t ima tes  o f  t h e r m a l  

fa t igue life are n o t  feasible.  I t  is o f  in te res t  to  n o t e  

t h a t  h igh  t h e r m a l  fa t igue  res is tance  requi res  h igh  

values o f  the  t h e r m a l  d i f fus iv i ty  K, t h e r m a l  con- 

duc t iv i ty ,  k ,  stress  i n t ens i t y  f ac to r  e x p o n e n t  n and  

ac t iva t ion  energy  Q w i t h  low values o f  c o n s t a n t  A ,  

Young ' s  m o d u l u s  E and  coef f ic ien t  o f  t h e r m a l  

e x p a n s i o n  a .  

In th i s  respect ,  for  bas ic  s tudies  o f  t h e r m a l  

fat igue life, mater ia l s  w i t h  low t h e r m a l  d i f fus iv i ty  

and  c o n d u c t i v i t y  m a y  be  mos t  useful  since t h e r m a l  

fat igue curves  can be  es tab l i shed  w i t h  m i n i m u m  

n u m b e r  o f  cycles. Glassy mater ia ls ,  for  th is  reason,  

appear  m o s t  useful .  
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